Llama3 fine-tuning
为什么选择 Llama3 进行微调
- 高精度:Llama3 在各种基准测试中表现出更加先进的准确性,包括 SuperGLUE、GLUE、SQuAD
- 高效率:Llama3 经过优化,可以高效运行,即使是在资源有限的设备上也是如此。这意味着它可以用于各种实时应用程序
- 泛化能力强:Llama3 能够泛化到与训练数据不同的数据,这意味着它可以用于各种新任务和域
- 更灵活:Llama3 可以使用多种方法进行微调,这使其可用于各种任务
unsloth
Unsloth 是一个新兴的人工智能公司,专注于加快和优化大型语言模型(LLMs)的训练过程。传统上,LLMs的训练需要大量的计算资源和内存,耗时较长。为了解决这一问题,Unsloth 开发了一款名为 Unsloth 的软件,能够将训练速度提升高达30倍,并将内存使用减少60%。
unsloth 主要特点和优势:
通过 QLoRA 和 LoRA 技术来加速 LLM 的微调,能够提升 2-5 倍的性能并减少 70% 的内存使用量
技术优化:
- 手动自动微分(Manual Autograd):通过手动计算梯度来优化模型更新过程,加快训练速度。
- 链式矩阵乘法(Chained Matrix Multiplication):高效地优化矩阵乘法,是LLMs训练中的关键步骤。
- Triton语言内核(Triton Language Kernels):使用由OpenAI开发的高性能计算语言 Triton 重写关键训练代码。
- Flash Attention:通过 xformers 和 Tri Dao 的实现,帮助模型集中注意力于输入数据的重要部分。
工作原理
- 通过将 LLM 的权重分解为低秩矩阵来减少内存使用量
- 能够在更小的 GPU 上训练 LLM,或者在更大的 GPU 上训练更大的 LLM
- 可以有效地加速各种 LLM 的微调,包括 GPT-3 Jurassic-1 Jumbo 和 Megatron-Turing NLG
兼容性和可访问性:
- 支持 NVIDIA、Intel 和 AMD 等主流GPU,无需购买昂贵的新硬件即可使用。
- 提供免费的开源版本,任何人都可以在GitHub上获取并体验快速训练和更少内存使用的好处。
适用场景:
- NLP
- 机器翻译
- 文本生成
- 问答系统
- 聊天机器人
支持的语言模型:
- 支持多种流行的语言模型,使用户可以轻松应用优化技术到其喜爱的模型上。
性能测试结果:
- 在多个数据集和硬件设置下,Unsloth 显著减少了训练时间和内存使用量,例如在 Alpaca 数据集上,将训练时间从85小时缩短到仅3小时,内存使用从16.7GB降至6.9GB。
社区和未来计划:
- 积极与AI社区互动,鼓励用户尝试其开源软件并提供反馈。
- 提供Pro和Max版本,支持多GPU和完整的LLM训练功能。
- 未来计划包括进一步增加推理速度、实施 sqrt 梯度检查点技术以进一步减少内存使用、优化训练方法等。
结论:
- Unsloth 在加快和优化AI语言模型训练方面取得了显著进展。他们的技术不仅提高了训练效率,还通过兼容性、可访问性和社区参与,致力于在AI和自然语言处理领域产生深远影响。
这些特点使得 Unsloth 成为当前AI领域中备受关注的技术创新之一。
具体实现
- 安装 unsloth
python
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers "trl<0.9.0" peft accelerate bitsandbytes
- 加载模型
python
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
"unsloth/llama-3-8b-Instruct-bnb-4bit",
"unsloth/llama-3-70b-bnb-4bit",
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
"unsloth/Phi-3-medium-4k-instruct",
"unsloth/mistral-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster!
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/llama-3-8b-bnb-4bit",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
- 修改模型 结合 QLoRA/LoRA 配置优化微调参数
python
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
- 加载并构造 train-data
python
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
from datasets import load_dataset
dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
- 训练模型配置
python
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
max_steps = 60,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
),
)
- [Optional]显示当前memory状态[对比内存占用]
python
#@title Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
- 实际执行训练
python
trainer_stats = trainer.train()
- [Optional]显示当前memory状态[对比内存占用]
python
#@title Show final memory and time stats
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory /max_memory*100, 3)
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
- 完成后执行推理
python
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonnaci sequence.", # instruction
"1, 1, 2, 3, 5, 8", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
stream
形式
python
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonnaci sequence.", # instruction
"1, 1, 2, 3, 5, 8", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
- 保存模型
python
model.save_pretrained("lora_model") # Local saving
tokenizer.save_pretrained("lora_model")
# model.push_to_hub("your_name/lora_model", token = "...") # Online saving
# tokenizer.push_to_hub("your_name/lora_model", token = "...") # Online saving
- unsloth加载模型
python
if False:
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# alpaca_prompt = You MUST copy from above!
inputs = tokenizer(
[
alpaca_prompt.format(
"What is a famous tall tower in Paris?", # instruction
"", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
- hf加载模型
python
if False:
# I highly do NOT suggest - use Unsloth if possible
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"lora_model", # YOUR MODEL YOU USED FOR TRAINING
load_in_4bit = load_in_4bit,
)
tokenizer = AutoTokenizer.from_pretrained("lora_model")
- 保存为VLLM float16
python
# Merge to 16bit
if True: model.save_pretrained_merged("llama-3-8b-bnb-4bit-ft-1", tokenizer, save_method = "merged_16bit",)
if True: model.push_to_hub_merged("lumiseven/llama-3-8b-bnb-4bit-ft-1", tokenizer, save_method = "merged_16bit", token = "")
# Merge to 4bit
if False: model.save_pretrained_merged("llama-3-8b-bnb-4bit-ft-1", tokenizer, save_method = "merged_4bit",)
if False: model.push_to_hub_merged("lumiseven/llama-3-8b-bnb-4bit-ft-1", tokenizer, save_method = "merged_4bit", token = "")
# Just LoRA adapters
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
if False: model.push_to_hub_merged("hf/model", tokenizer, save_method = "lora", token = "")
- GGUF/llama.cpp 转换
python
# Save to 8bit Q8_0
if False: model.save_pretrained_gguf("model", tokenizer,)
if False: model.push_to_hub_gguf("hf/model", tokenizer, token = "")
# Save to 16bit GGUF
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "f16", token = "")
# Save to q4_k_m GGUF
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "q4_k_m", token = "")